

Deep convolutional models

TOTAL POINTS 10

1.	Which of the following do you typically see as you move to deeper layers in a ConvNet?	1 point
	$lacktriangleq n_H$ and n_W decrease, while n_C increases	
	$igcap n_H$ and n_W increases, while n_C decreases	
	$\bigcap n_H$ and n_W increases, while n_C also increases	
	$\bigcap_{H} $ and $n_{W} $ decreases, while n_{C} also decreases	
2.	Which of the following do you typically see in a ConvNet? (Check all that apply.)	1 point
	Multiple CONV layers followed by a POOL layer	
	Multiple POOL layers followed by a CONV layer	
	FC layers in the last few layers	
	PC layers III the last lew layers	
	FC layers in the first few layers	
3.	In order to be able to build very deep networks, we usually only use pooling layers to downsize the height/width	1 point
	of the activation volumes while convolutions are used with "valid" padding. Otherwise, we would downsize the input of the model too quickly.	
	○ True	
	False	
4.	Training a deeper network (for example, adding additional layers to the network) allows the network to fit more	1 point
	complex functions and thus almost always results in lower training error. For this question, assume we're referring to "plain" networks.	
	↑ True	
	False	
_	7 (II)	
5.	The following equation captures the computation in a ResNet block. What goes into the two blanks above?	1 point
	$a^{[l+2]} = g(W^{[l+2]}g(W^{[l+1]}a^{[l]} + b^{[l+1]}) + b^{l+2} + \underline{\hspace{1cm}}) + \underline{\hspace{1cm}}$	
	$lack a^{[l]}$ and 0, respectively	
	\bigcirc 0 and $a^{[l]}$, respectively	
	\bigcirc 0 and $z^{[l+1]}$, respectively	
	\bigcirc $z^{[l]}$ and $a^{[l]}$, respectively	
6.	Which ones of the following statements on Residual Networks are true? (Check all that apply.)	1 point
	\square A ResNet with L layers would have on the order of L^2 skip connections in total.	
	The skip-connection makes it easy for the network to learn an identity mapping between the input and the output within the ResNet block.	
	The skip-connections compute a complex non-linear function of the input to pass to a deeper layer in the	
	network.	
	✓ Using a skip-connection helps the gradient to backpropagate and thus helps you to train deeper networks	
7.	Suppose you have an input volume of dimension 64x64x16. How many parameters would a single 1x1	1 point
,.	convolutional filter have (including the bias)?	1 point
	○ 1	
	17	
	○ 2	
	○ 4097	
8.	Suppose you have an input volume of dimension $n_H \times n_W \times n_C$. Which of the following statements you agree	1 point
	with? (Assume that "1x1 convolutional layer" below always uses a stride of 1 and no padding.)	
	$igwedge$ You can use a pooling layer to reduce n_H, n_W , but not n_C .	
	$igvee$ You can use a 1x1 convolutional layer to reduce n_C but not n_H, n_W .	
	□ Vou can use a pooling layer to reduce any any and a c	

	L	The call use a pooling layer to reduce n_H, n_W , and n_C .		
		You can use a 1x1 convolutional layer to reduce $n_H,n_W,$ and $n_C.$		
9.	١٨.	Which ones of the following statements on Inception Networks are true? (Check all that apply.)		(a solut
9.	. v	which ones of the following statements on inception Networks are true: (Check all that apply.)		1 point
		Inception networks incorporates a variety of network architectures (similar to dropout, which rando a network architecture on each step) and thus has a similar regularizing effect as dropout.	omly chooses	
	•	A single inception block allows the network to use a combination of 1x1, 3x3, 5x5 convolutions and	pooling.	
		Inception blocks usually use 1x1 convolutions to reduce the input data volume's size before applyin 5x5 convolutions.	ig 3x3 and	
		Making an inception network deeper (by stacking more inception blocks together) should not hurt to performance.	raining set:	
10		Which of the following are common reasons for using open-source implementations of ConvNets (both nodel and/or weights)? Check all that apply.	the	1 point
	V	Parameters trained for one computer vision task are often useful as pretraining for other computer	r vision tasks.	
	·	It is a convenient way to get working an implementation of a complex ConvNet architecture.		
		The same techniques for winning computer vision competitions, such as using multiple crops at tes widely used in practical deployments (or production system deployments) of ConvNets.	t time, are	
		A model trained for one computer vision task can usually be used to perform data augmentation ex different computer vision task.	ven for a	
•		Kawshik Kumar Paul, understand that submitting work that isn't my own may result in permanent sillure of this course or deactivation of my Coursera account.		6 P P
	Le	earn more about Coursera's Honor Code		
			Save	Submit